dually quasi-de morgan stone semi-heyting algebras i. regularity

Authors

hanamantagouda p. sankappanavar

abstract

this paper is the first of a two part series. in this paper, we first prove that the variety of dually quasi-de morgan stone semi-heyting algebras of level 1 satisfies the strongly blended $lor$-de morgan law introduced in cite{sa12}. then, using this result and the results of cite{sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety of regular dually quasi-de morgan stone semi-heyting algebras of level 1. it is shown that there are 25 nontrivial simple algebras in this variety. in part ii, we prove, using the description of simples obtained in this part, that the variety $mathbf{rdqdstsh_1}$ of regular dually quasi-de morgan stone semi-heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{rdqdstsh_1}$-chains and the variety of dually quasi-de morgan boolean semi-heyting algebras--the latter is known to be generated by the expansions of the three 4-element boolean semi-heyting algebras. as consequences of this theorem, we present (equational) axiomatizations for several subvarieties of $mathbf{rdqdstsh_1}$. the part ii concludes with some open problems for further investigation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

full text

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

full text

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20]. Then, using this result and the results of [20], we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety o...

full text

dually quasi-de morgan stone semi-heyting algebras ii. regularity

this paper is the second of a two part series. in this part, we prove, using the description of simples obtained in part i, that the variety $mathbf{rdqdstsh_1}$ of regular dually quasi-de morgan stone semi-heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{rdqdstsh_1}$-chains and the variety of dually quasi-de morgan boolean semi-heyting algebras--...

full text

Ji-distributive Dually Quasi-de Morgan Linear Semi-heyting Algebras

The main purpose of this paper is to axiomatize the join of the variety DPCSHC of dually pseudocomplemented semi-Heyting algebras generated by chains and the variety generated by D2, the De Morgan expansion of the four element Boolean Heyting algebra. Toward this end, we first introduce the variety DQDLNSH of dually quasi-De Morgan linear semi-Heyting algebras defined by the linearity axiom and...

full text

INVOLUTIVE STONE ALGEBRAS AND REGULAR a-DE MORGAN ALGEBRAS

A piggyback duality and a translation process between this one and a Priestley duality for each subvariety of involutive Stone algebras and regular o-De Morgan algebras is presented. As a consequence we describe free algebras and the prime spectrum of each subvariety.

full text

My Resources

Save resource for easier access later


Journal title:
categories and general algebraic structures with applications

Publisher: shahid beheshti university

ISSN 2345-5853

volume 2

issue 1 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023